IAEA Training in level 1 PSA and PSA applications

Basic Level 1. PSA course for analysts

System Analysis

System analysis of an example system

- NORMALLY-OPERATING / STANDBY EQUIPMENT MODELS
- CONSIDERED FAILURE MODES
- MAINTENANCE UNAVAILABILITIES
- COMMON CAUSE FAILURE MODELLING
- PERSONNEL ERRORS
- STANDBY FAILURES

EXAMPLE SYSTEM DATA

Component	Failure Mode	Failure Rate
Pump	Fail to Start	2.5E-03 per demand
	Fail to Run	3.5E-05 per hour
Check Valve	Fail to Open	1.5E-04 per demand
	Fail to Close	8.0E-04 per demand
	Spurious Closure	1.0E-08 per hour
	Spurious Opening	5.5E-07 per hour
Manual Valve	Spurious Closure	4.5E-08 per hour
Tank	Rupture	3.0E-08 per hour
Pump - CCF	Fail to Start - ß	6.0E-02
	Fail to Start - γ	2.0E-01
	Fail to Run - ß	2.0E-02
	Fail to Run - γ	2.5E-01
Check Valve - CCF	Fail to Open - ß	???
	Fail to Open - γ	???
	Fail to Close - ß	???
	Fail to Close - γ	???

EXAMPLE CASES

CASE 1

- ONE PUMP NORMALLY RUNNING WITH FLOW THROUGH VALVES VCS AND VCD
- TWO PUMPS IN STANDBY
- MONTHLY ROTATION OF NORMALLY RUNNING PUMP

<u>CASE 2</u>

- ALL PUMPS IN STANDBY
- ONE PUMP TESTED EACH MONTH WITH FLOW THROUGH VALVE VCD

CASE 3

- **ALL PUMPS IN STANDBY**
- ONE PUMP TESTED EACH MONTH WITH RECIRCULATION TO TANK
- INJECTION TEST THROUGH VALVE VCD ONCE EVERY 18 MONTHS DURING **SHUTDOWN**

- INCORRECT IMPORTANCE (NOT SYMMETRIC)
 MORE DIFFICULT FOR APPLICATIONS
- MAY NOT IDENTIFY REAL ASYMMETRIES IN PLANT
- INTRODUCES ARTIFICIAL ASYMMETRY IN PSA MODELS / RESULTS
- DISADVANTAGES
 INTRODUCES ARTIFICIAL ASYMMETRY IN PSA MODELS AND
- ADVANTAGES
 SIMPLIFIED MODELS
- REQUIRES CONSISTENT ASSUMPTIONS IN ALL MODELS
- ASSUME TRAIN 1 NORMALLY RUNNING

NORMALLY-OPERATING / STANDBY EQUIPMENT CASE 1 ALIGNMENT MODELS "SPECIFIED TRAIN"

NORMALLY-OPERATING / STANDBY EQUIPMENT CASE 1 ALIGNMENT MODELS "DISTRIBUTED TRAINS"

- ASSUME EACH TRAIN NORMALLY RUNNING 1/3 OF TIME
- REQUIRES CONSISTENT ASSUMPTIONS IN ALL MODELS
- ADVANTAGES
 - CORRECT LOGICAL COMBINATIONS
 - CORRECT IMPORTANCE (SYMMETRIC)
 - EASIER FOR APPLICATIONS

System analysis

- DISADVANTAGES
 - COMPLEMENT LOGIC ("NOT" EVENTS) TO DETERMINE MUTUALLY EXCLUSIVE ALIGNMENTS
 - 0.333 MULTIPLIER FOR CORRECT TOTAL FREQUENCY

"PASSIVE" FAILURE MODES UNAVAILABILITY - GENERAL FORM

$\mathbf{Q} = \lambda^* (\mathbf{t}_T / \mathbf{2} + \mathbf{t}_m)$

where λ = Component failure rate (failure / hour)

- t_T = Time between functional tests (hours)
- t_m = PSA mission time (hours)

NOTE:

A <u>functional</u> test provides positive indication of the component status (e.g., flow, pressure, level, temperature, etc.).

• PUMP COMMON CAUSE STARTING FAILURES

 $\beta s \gamma s Q_s = 3.0E-05$

• PUMP COMMON CAUSE RUNNING FAILURES

 $\beta_{R} \gamma_{R} Q_{R} (24) = 4.2E-06$

- ASSUME PUMP P1 IS RUNNING
- ASSUME ROTATION IS P1-P2-P3

Valve	tτ	t _m	Q _{MV}	Q _{cv}
VCS	0	24	1.1E-06	
VCD	0	24	1.1E-06	
V1S, V1C, V1D	0	24	2.2E-06	2.4E-07
V2S, V2C, V2D	1440	24	6.7E-05	2.4E-07
V3S, V3C, V3D	720	24	3.5E-05	2.4E-07

<u>NOTES</u>

- Q_{MV} = Manual Valve Spurious Closure
- Q_{CV} = Check Valve Spurious Opening (Standby)
 - = Check Valve Spurious Closure (Running)

- Successful operation of the normally running train confirms that check values V2C and V3C are closed.
- On average, each train is running for 1 month and is in standby for 2 months. At the time of the "average" initiating event, one standby train has been idle for ~0.5 month, and one train has been idle for ~1.5 months. The most limiting conditions apply if the initiating event occurs just before the end of the month. These conditions are used in the table.

• ASSUME TEST ROTATION IS P1-P2-P3

Valve	t⊤	t _m	Q _{MV}	Q _{cv}
VCS	720	24	1.7E-05	
VCD	720	24	1.7E-05	
V1S, V1C, V1D	2160	24	9.9E-05	2.0E-04
V2S, V2C, V2D	1440	24	6.7E-05	2.0E-04
V3S, V3C, V3D	720	24	3.5E-05	2.0E-04

NOTES

- Q_{MV} = Manual Valve Spurious Closure
- Q_{CV} = Check Valve Spurious Opening (Standby)
 - = Check Valve Spurious Closure (Running)

"PASSIVE" FAILURE MODES CASE 2 NOTES

- Successful performance of each test confirms that the check valves in the untested trains are closed. The functional test interval for check valve spurious opening failures is 1 month.
- On average, each train is tested once every 3 months. At the time of the "average" initiating event, one train has been idle for ~0.5 month, one train has been idle for ~1.5 months, and one train has been idle for ~2.5 months. The most limiting conditions apply if the initiating event occurs just before the end of the month. These conditions are used in the table.

• ASSUME TEST ROTATION IS P1-P2-P3

Valve	tτ	t _m	Q _{MV}	Q _{cv}
VCS	720	24	1.7E-05	
VCD	12960	24	2.9E-04	
V1S, V1C, V1D	2160	24	9.9E-05	2.0E-04
V2S, V2C, V2D	1440	24	6.7E-05	2.0E-04
V3S, V3C, V3D	720	24	3.5E-05	2.0E-04

<u>NOTES</u>

- Q_{MV} = Manual Valve Spurious Closure
- Q_{CV} = Check Valve Spurious Opening (Standby)
 - = Check Valve Spurious Closure (Running)

- Case 3 is similar to Case 2, except the functional test interval for valve VCD is 18 Months.
- Spurious closure of valve VCD disables the system.

- ONE TRAIN MAY BE UNAVAILABLE FOR 14 DAYS
- TWO TRAINS MAY BE UNAVAILABLE FOR 72 HOURS
- THE PLANT MUST BE SHUT DOWN IF ALL THREE TRAINS ARE UNAVAILABLE

- MUST ACCOUNT FOR TWO TYPES OF MAINTENANCE
- SINGLE-TRAIN MAINTENANCE
 - APPLIES TO EACH TRAIN (1, 2, 3)
 - FREQUENCY AND DURATION
 - DATA FROM SINGLE COMPONENT MAINTENANCE RECORDS
- TWO-TRAIN MAINTENANCE
 - APPLIES TO EACH PAIR OF TRAINS (1*2, 1*3, 2*3)
 - FREQUENCY AND DURATION
 - NOT INDEPENDENT COMBINATION OF SINGLE-TRAIN DATA

MAINTENANCE

CASE 1 MAINTENANCE MODELS "GROUPED MAINTENANCE"

 MAINTENANCE BASIC EVENTS IN ONLY 2 STANDBY TRAINS

ADVANTAGES

- LOGICALLY CORRECT CUTSETS
- NO SPECIAL LOGIC FOR "NORMALLY RUNNING" TRAIN

DISADVANTAGES

- REQUIRES MAINTENANCE DATA MANIPULATION FOR CORRECT UNAVAILABILITIES
- INCORRECT IMPORTANCE (NOT SYMMETRIC)
- MORE DIFFICULT FOR APPLICATIONS

MAINTENANCE

CASE 1 MAINTENANCE MODELS "DISTRIBUTED MAINTENANCE"

- MAINTENANCE BASIC EVENTS IN ALL THREE TRAINS
- ADVANTAGES
 - DIRECT QUANTIFICATION OF MAINTENANCE DATA
 - CORRECT IMPORTANCE (SYMMETRIC)
 - EASIER FOR APPLICATIONS
- **DISADVANTAGES**
 - SPECIAL LOGIC TO ACCOUNT FOR "NORMALLY RUNNING" TRAIN
 - INCORRECT CUTSETS (ALL THREE TRAINS)

CASE 2 MAINTENANCE MODELS

- LESS COMPLICATED LOGIC
 - ALL THREE TRAINS ARE STANDBY
 - NO SPECIAL LOGIC TO ACCOUNT FOR "NORMALLY RUNNING" TRAIN
- SAME GENERAL ISSUES AS CASE 1 MODELS
- PSAs OFTEN USE "DISTRIBUTED MAINTENANCE" MODELS FOR STANDBY SYSTEMS
 POST-QUANTIFICATION CUTSET EDITING
 RETAIN CONSERVATIVE THREE-TRAIN CUTSETS

- MOTOR-GENERATORS (FAIL TO START, FAIL TO RUN)
- HVAC CHILLER UNITS (FAIL TO START, FAIL TO RUN)
- HVAC FANS (FAIL TO START, FAIL TO RUN)
- AIR COMPRESSORS (FAIL TO START, FAIL TO RUN)
- DIESEL GENERATORS (FAIL TO START, FAIL TO RUN)
- MOTOR-DRIVEN (FAIL TO START, FAIL TO RUN)
 TURBINE-DRIVEN (FAIL TO START, FAIL TO RUN)
 DIESEL-DRIVEN (FAIL TO START, FAIL TO RUN)
- PUMPS
- COMMON CAUSE FAILURES TYPES OF COMPONENTS FOR COMMON CAUSE ANALYSIS

- CONDENSER STEAM DUMPS (FAIL TO OPEN)
- PRESSURIZER PORVS (FAIL TO OPEN)
- PRIMARY AND SECONDARY RELIEF (FAIL TO OPEN)
- MAIN STEAM ISOLATION (FAIL TO CLOSE)

- HYDRAULIC (FAIL TO OPEN, FAIL TO CLOSE)
- SOLENOID (FAIL TO OPEN, FAIL TO CLOSE)
- AIR-OPERATED (FAIL TO OPEN, FAIL TO CLOSE)
- MOTOR-OPERATED (FAIL TO OPEN, FAIL TO CLOSE)
- VALVES
- CONTAINMENT COOLERS (FAIL TO START, FAIL TO RUN)

COMMON CAUSE FAILURES TYPES OF COMPONENTS FOR COMMON CAUSE ANALYSIS

- CIRCUIT BREAKERS (FAIL TO OPEN, FAIL TO CLOSE)
 BUS SUPPLY CIRCUIT BREAKERS
 AUTOMATIC TRANSFER CIRCUIT PREAKERS
 - AUTOMATIC TRANSFER CIRCUIT BREAKERS
 - DIESEL GENERATOR OUTPUT CIRCUIT BREAKERS
 - REACTOR TRIP BREAKERS

COMMON CAUSE FAILURES

TYPES OF COMPONENTS FOR COMMON CAUSE ANALYSIS

	PSA EXPERIENCE		
		MOST DO NOT	
TYPE OF COMPONENT	SOME MODEL	MODEL	
	COMMON	COMMON	
	CAUSE	CAUSE	
CHECK VALVES	x		
SAFETY VALVES	x		
RELAYS	X		
BATTERIES	X		
TRANSFORMERS		x	
BATTERY CHARGERS		x	
INVERTERS		x	
SIGNAL TRANSMITTERS		x	
SIGNAL COMPARATORS		x	
ELECTRONIC COMPONENTS		x	

COMMON CAUSE FAILURES

COMMON CAUSE FAILURE LOGIC

SYSTEM FAILURE CUTSETS (PARENTHESES INDICATE COMMON CAUSE FAILURES)

АВС
(AB) C
(AC) B
(BC) A
(AB) (BC)
(AB) (AC)
(AC) (BC)
(ABC)

COMMON CAUSE FAILURES

VENN DIAGRAM REPRESENTATION

- LET A = TOTAL CIRCLE
 - A1 = INDEPENDENT PORTION OF A
 - = (1 β) Α
 - A2 = PORTION OF A THAT OCCURS WITH ONE SPECIFIC ADDITIONAL COMPONENT
 - = (1 / 2) β (1 γ) Α
 - A3 = PORTION OF A THAT OCCURS WITH BOTH ADDITIONAL COMPONENTS
 - = γβ Α

CHECK FOR "CONSERVATION OF A"

- $A = A1 + 2^*A2 + A3$
 - = (1 β) A + 2 * [(1 / 2) β (1 γ) A] + γβ A
 - = $\mathbf{A} \beta \mathbf{A} + \beta \mathbf{A} \gamma \beta \mathbf{A} + \gamma \beta \mathbf{A}$
 - = A

COMMON CAUSE FAILURES SYSTEM FAILURE EQUATION

- FROM THE CUTSET REPRESENTATION, LET
 - A1 = A = B = C A2 = (AB) = (AC) = (BC)A3 = (ABC)
- COMPLETE FAULT TREE SOLUTION CONTAINS 8 CUTSETS
- SYSTEM FAILURE IS THE SUM OF ALL COMBINATIONS
 - $Q = A1^*A1^*A1 + 3^*A2^*A1 + 3^*A2^*A2 + A3$
 - = $[(1-\beta)A]^3 + 3^*[(1/2)\beta(1-\gamma)A]^*[(1-\beta)A] + 3^*[(1/2)\beta(1-\gamma)A]^2 + \gamma\beta A$

COMMON CAUSE FAILURES

IMPORTANT FACTORS AFFECTING THE ASSESSMENT OF COMMON CAUSE PARAMETERS

- TYPE OF COMPONENT BEING MODELED
- COMPONENT APPLICATION AND OPERATING MODES IN THE PLANT BEING MODELED
 - STANDBY
 - INTERMITTENT OPERATION
 - NORMALLY RUNNING
- LEVEL OF DETAIL IN THE ANALYSIS OF SPECIFIC CAUSES FOR COMPONENT FAILURE WITHIN THE SYSTEM MODEL

COMMON CAUSE FAILURES

CASE 1 COMMON CAUSE MODELS PUMP START FAILURES

• STANDBY PUMPS

System analysis

- NORMALLY RUNNING PUMP AND STANDBY PUMPS
 - RESTART AFTER LOSS OF OFFSITE POWER
 - COUPLING / DECOUPLING DEPENDS ON CIRCUIT DESIGN
 - CIRCUIT BREAKER / RELAYS FOR PUMP TRIP / START
 - CAN USUALLY JUSTIFY DECOUPLING

- NORMALLY RUNNING PUMP AND STANDBY PUMPS
- ONE MONTH RUNNING TIME USUALLY NOT LONG ENOUGH TO DECOUPLE COMMON CAUSES FOR RUNNING FAILURES (E.G.., LONG-TERM WEAROUT)
- THREE MONTHS OR LONGER RUNNING TIME MAY
 JUSTIFY DECOUPLING

- START FAILURES FOR ALL PUMPS
- RUNNING FAILURES FOR ALL PUMPS
- CANNOT JUSTIFY DECOUPLING
- MAY JUSTIFY SCREENING OUT SOME COMMON CAUSE FAILURE EVENTS FROM GENERIC DATA BASED ON STAGGERED TESTING
 - DIFFICULT TO DETERMINE GENERIC TESTING
 - DOCUMENT WHY STAGGERED TESTING IS ADEQUATE COMMON CAUSE DEFENSE

PERSONNEL ERRORS UNAVAILABILITY - GENERAL FORM

- $\mathbf{Q} = \lambda_{A} * \mathbf{Q}_{HE} * \mathbf{T}_{DET}$
- where λ_A = Frequency of activity (test, maintenance, calibration, etc.) (event / hour)
 - Q_{HE} = Human error rate (error / event)
 - T_{DET} = Error detection time (hours)

PERSONNEL ERRORS HUMAN ERROR DETECTION

- CONTINUOUSLY MONITORED PARAMETER (LEVEL, FLOW PRESSURE, TEMPERATURE, ETC.)
- DOCUMENTED INSPECTIONS
- PERIODIC TESTING
- ROUTINE OPERATIONS (TRANSFER OF NORMALLY OPERATING PUMPS, ETC.)
- BEWARE OF FAILURE MODE AND NORMAL INDICATION
 - CONTAINMENT PRESSURE LOW
 - TANK LEVEL HIGH

STANDBY FAILURE RATES COMPONENT DEMAND FAILURES

- COMPONENT FAILURES ON DEMAND CAN RESULT FROM TWO TYPES OF CAUSES
 - "SHOCK" FAILURES THAT OCCUR SIMPLY BECAUSE THE COMPONENT IS DEMANDED TO CHANGE STATUS
 - "STANDBY" FAILURES THAT OCCUR FROM CAUSES THAT ACCUMULATE OVER TIME WHILE THE COMPONENT IS IDLE
- CURRENT PSA DATABASES ACCOUNT FOR THE TOTAL EFFECTS FROM BOTH TYPES OF CAUSES
- VERY LITTLE GENERIC DATA AVAILABLE TO DETERMINE ACTUAL CONTRIBUTIONS FROM "SHOCKS" AND "STANDBY" FAILURES

STANDBY FAILURE RATES COMPONENT DEMAND FAILURES

- PLANT-SPECIFIC DATA ALLOW BETTER
 DETERMINATION OF CAUSES
- PSA MODELS DO NOT NEED TO SEPARATE FAILURE CAUSES FOR GOOD ESTIMATES OF COMPONENT DEMAND FAILURE RATES
- DEMAND FAILURE RATE = (NUMBER OF FAILURES) / (NUMBER OF DEMANDS)
- ESTIMATES OF "SHOCK" AND "STANDBY" FAILURE RATES ARE VERY IMPORTANT FOR APPLICATIONS THAT EXAMINE RISK IMPACTS FROM VARIATIONS IN TEST INTERVALS AND ALLOWED OUTAGE TIMES

STANDBY FAILURE RATES

System analysis

SIMPLIFIED LINEAR ALGEBRAIC MODEL FOR COMPONENT DEMAND FAILURE RATE

$Q_D = f * Q_T + (1 - f) * Q_T * (t_A / t_N)$

Estimated component demand failure rate where = Q⊤ = Total observed demand failure rate f = Fraction of observed failures due to "shocks" (1 - f) = Fraction of observed failures due to "standby" causes = Test interval to be used for the analysis t₄ Nominal component test interval for observed t_N = failure rate data

NOTE:

(1 - f) *
$$Q_T / t_N$$
 = "Standby failure rate", λ_S

STANDBY FAILURE RATES

System analysis

EXAMPLE APPLICATION OF MODEL UNAVAILABILITY DUE TO TESTING

- ISOLATE INJECTION LINE (CLOSE VALVE VCD)
- OPEN TEST LINE (OPEN VALVE VCT)
- START AND RUN PUMP ON RECIRCULATION FLOW

IMPACT:

• SYSTEM IS DISABLED DURING TEST DUE TO CLOSED INJECTION VALVE VCD

$$Q_{\text{system/test}} = (1 / t_A) * T_{\text{test}}$$

$$Q_{train/test} = (1 / t_A) * [f * Q_T + (1 - f) * Q_T * (t_A / t_N)] * T_R$$

where
$$1/t_A =$$
 Test frequency (tests / hour)
 $T_{test} =$ Test duration (hours / test)
 $T_R =$ Component mean repair time
(hours / maintenance event)

STANDBY FAILURE RATES UNAVAILABILITY DUE TO TESTING

- FIRST TERM IS DIRECT CONTRIBUTION TO SYSTEM UNAVAILABILITY DUE TO CLOSED VALVE VCD.
- SECOND TERM ACCOUNTS FOR TEST-INDUCED FAILURES OF THE PUMP THAT REQUIRE REPAIRS.
- BOTH OF THESE EFFECTS SHOULD BE EVALUATED AS "DOWNSIDE" CONTRIBUTIONS TO UNAVAILABILITY DUE TO MORE FREQUENT TESTING.
- THESE "DOWNSIDE" CONTRIBUTIONS ARE COMPARED WITH IMPROVED COMPONENT AVAILABILITY DUE TO REDUCED EXPOSURE TIME FOR "STANDBY" FAILURES BETWEEN TESTS.

STANDBY FAILURE RATES UNAVAILABILITY DUE TO TESTING

STANDBY FAILURE RATES

EXAMPLE APPLICATION OF MODEL UNAVAILABILITY DUE TO MAINTENANCE

CONFIGURATION:

• TWO TRAIN SYSTEM

System analysis

- PERIODIC TESTING OF SECOND TRAIN IS REQUIRED WHEN FIRST TRAIN IS DISABLED FOR MAINTENANCE
- TEST IS PERFORMED WITH COMMON DISCHARGE VALVE VCD OPEN

STANDBY FAILURE RATES

SYSTEM UNAVAILABILITY DUE TO MAINTENANCE

$$Q_{maint} = 2 * (\lambda_{maint} * T_R) * [(1 / t_{t/m}) * Q_D * T_{R2}]$$

where	λmaint	=	Single component maintenance frequency
			(maintenance event / hour)
	T _R	=	Single component mean repair time
			(hours / maintenance event)
	1 / t _{t/m}	=	Test frequency for second component when first
			component is disabled (tests / hour)
	Q _D	=	Component demand failure rate (failure / test)
	T _{R2}	=	Mean repair time for one component when both
			components are disabled
			(hours / maintenance event)

STANDBY FAILURE RATES UNAVAILABILITY DUE TO MAINTENANCE

λ _{maint} * T _R	=	Unavailability of single component due to
		maintenance

 $(1 / t_{t/m}) * Q_D * T_{R2} =$ Conditional system unavailability due to test-induced failures of second component

- This presentation showed how to approach the system analysis performed for use in PSA
- Specific aspects of the analysis were presented using a simple example system:
 - component types
 - failure modes
 - common cause failures
 - test and maintenance